Open Access
VOL. 58 | 2010 Breuil's classification of p-divisible groups over regular local rings of arbitrary dimension
Chapter Author(s) Adrian Vasiu, Thomas Zink
Editor(s) Iku Nakamura, Lin Weng
Adv. Stud. Pure Math., 2010: 461-479 (2010) DOI: 10.2969/aspm/05810461

Abstract

Let k be a perfect field of characteristic p3. We classify p-divisible groups over regular local rings of the form W(k)[[t1,,tr,u]]/(ue+pbe1ue1++pb1u+pb0), where b0,,be1W(k)[[t,,tr]] and b0 is an invertible element. This classification was in the case r=0 conjectured by Breuil and proved by Kisin.

Information

Published: 1 January 2010
First available in Project Euclid: 24 November 2018

zbMATH: 1210.14049
MathSciNet: MR2676165

Digital Object Identifier: 10.2969/aspm/05810461

Subjects:
Primary: 11G10 , 11G18 , 14F30 , 14G35 , 14K10 , 14L05

Rights: Copyright © 2010 Mathematical Society of Japan

PROCEEDINGS ARTICLE
19 PAGES


Back to Top