Open Access
VOL. 60 | 2010 Quantum invariance under $\mathbb{P}^1$ flops of type $(k + 2, k)$
Chapter Author(s) Hui-Wen Lin
Editor(s) JongHae Keum, Shigeyuki Kondō, Kazuhiro Konno, Keiji Oguiso
Adv. Stud. Pure Math., 2010: 271-300 (2010) DOI: 10.2969/aspm/06010271

Abstract

In the joint paper [8] with Y.-P. Lee and C.-L. Wang, we have shown that the big quantum ring is invariant under $\mathbb{P}^r$ flops of splitting type, after an analytic continuation over the extended Kähler moduli space. It is a generalization of our previous work for the case of simple $\mathbb{P}^r$ flops [7]. In this note, I would like to outline the results and concentrate mainly on the detailed study of a simple type, called $\mathbb{P}^1$ flops of type $(k + 2, k)$.

Information

Published: 1 January 2010
First available in Project Euclid: 24 November 2018

zbMATH: 1214.14047
MathSciNet: MR2761932

Digital Object Identifier: 10.2969/aspm/06010271

Subjects:
Primary: 14E30 , 14N35 , 53D45

Keywords: analytic continuations , Gromov–Witten Invariants , ordinary flops , quantum cohomology

Rights: Copyright © 2010 Mathematical Society of Japan

PROCEEDINGS ARTICLE
30 PAGES


Back to Top