Open Access
December 1985 On representations of the bimodule DA
Ibrahim Assem
Tsukuba J. Math. 9(2): 217-232 (December 1985). DOI: 10.21099/tkbjm/1496160285

Abstract

Let $A$ be a finite-dimensional algebra over an algebraically closed field $k$. A representation of the $A$-$A$ bimodule $DA=\mathrm{Hom}_{k}(A, k)$ is a module over the matrix algebra: \[\overline{A}= \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}\] We first prove that $\overline{A}$ is representation-finite (and in fact simply connected) whenever $A$ is an iterated tilted algebra of Dynbin type. We then assume that $A$ is a tilted algebra of Dynkin type, and characterise $\overline{A}$ by its Auslander-Reiten quiver.

Citation

Download Citation

Ibrahim Assem. "On representations of the bimodule DA." Tsukuba J. Math. 9 (2) 217 - 232, December 1985. https://doi.org/10.21099/tkbjm/1496160285

Information

Published: December 1985
First available in Project Euclid: 30 May 2017

zbMATH: 0592.16019
MathSciNet: MR818205
Digital Object Identifier: 10.21099/tkbjm/1496160285

Rights: Copyright © 1985 University of Tsukuba, Institute of Mathematics

Vol.9 • No. 2 • December 1985
Back to Top