Open Access
December 2013 On the Cartier duality of certain finite group schemes of order $p^n$, II
Michio Amano
Tsukuba J. Math. 37(2): 259-269 (December 2013). DOI: 10.21099/tkbjm/1389972029

Abstract

We explicitly describe the Cartier dual of the $l$-th Frobenius kernel $N_1$ of the group scheme $\mathscr{G}^\lambda$, which deforms $\mathbf{G}_a$ to $\mathbf{G}_m$. Then the Cartier dual of $N_1$ is given by a certain Frobenius type kernel of the Witt scheme. Here we assume that the base ring $A$ is a $\mathbf{Z}_{(p)} / (p^n)$-algebra, where $p$ is a prime number. The obtained result generalizes a previous result by the author [1] which assumes that $A$ is an $\mathbf{F}_p$--algebra.

Citation

Download Citation

Michio Amano. "On the Cartier duality of certain finite group schemes of order $p^n$, II." Tsukuba J. Math. 37 (2) 259 - 269, December 2013. https://doi.org/10.21099/tkbjm/1389972029

Information

Published: December 2013
First available in Project Euclid: 17 January 2014

zbMATH: 1315.14061
MathSciNet: MR3161577
Digital Object Identifier: 10.21099/tkbjm/1389972029

Rights: Copyright © 2013 University of Tsukuba, Institute of Mathematics

Vol.37 • No. 2 • December 2013
Back to Top