Open Access
December 2013 Helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space $E^3_1$ satisfying $\Delta^{III}r=Ar$
Mohammed Bekkar, Bendehiba Senoussi
Tsukuba J. Math. 37(2): 339-353 (December 2013). DOI: 10.21099/tkbjm/1389972033

Abstract

In this paper the helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space are classified under the condition $\Delta^{III}r=Ar$, where $Ar$, is a real $3 \times 3$ matrix and $\Delta^{III}$ is the Laplace operator with respect to the third fundamental form.

Citation

Download Citation

Mohammed Bekkar. Bendehiba Senoussi. "Helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space $E^3_1$ satisfying $\Delta^{III}r=Ar$." Tsukuba J. Math. 37 (2) 339 - 353, December 2013. https://doi.org/10.21099/tkbjm/1389972033

Information

Published: December 2013
First available in Project Euclid: 17 January 2014

zbMATH: 1353.53012
MathSciNet: MR3161581
Digital Object Identifier: 10.21099/tkbjm/1389972033

Subjects:
Primary: 53A05 , 53A07
Secondary: 53C40

Keywords: helicoidal surfaces , Laplacian operator , surfaces of coordinate finite type

Rights: Copyright © 2013 University of Tsukuba, Institute of Mathematics

Vol.37 • No. 2 • December 2013
Back to Top