Abstract
We show that space-like isothennic surfaces in the pseudo-riemannian space $\bf{R}^{n-j,j}$ are associated to $O(n - j + 1,j + 1)/O(n - j,j) x 0(1, I)$-system, and that the action of a rational map with two simple poles on the space of local solutions of $O(n - j + I,j + l)/O(n - j,j) \times 0(1, I)$-system correspond to Ribaucour and Darboux transformations to space-like surfaces in $\bf{R}^{n-j,i}$.
Citation
Martha P. Dussan. "Space-like isothermic surfaces and Grassmannian systems." Tsukuba J. Math. 30 (1) 81 - 102, June 2006. https://doi.org/10.21099/tkbjm/1496165030
Information