Open Access
June 2004 On finite-dimensional maps
H. Murat Tuncali, Vesko Valov
Tsukuba J. Math. 28(1): 155-167 (June 2004). DOI: 10.21099/tkbjm/1496164719

Abstract

Let $f$ : $X\rightarrow Y$ be a perfect surjective map of paracompact spaces. It is shown that if $Y$ is a C-space (resp., $\dim Y\leq n$ and $\dim f\leq m)$ , then the function space $C(X, I^{\infty})$ (resp., $C(X,$ $I^{2n+1+m})$) equipped with the source limitation topology contains a dense $G_{\delta}$-set $\mathscr{H}$ such that $f\times g$ embeds $X$ into $Y\times I^{\infty}$ (resp., into $Y\times I^{2n+1+m}$) for every $g\in \mathscr{H}$. Some applications of this result are also given.

Citation

Download Citation

H. Murat Tuncali. Vesko Valov. "On finite-dimensional maps." Tsukuba J. Math. 28 (1) 155 - 167, June 2004. https://doi.org/10.21099/tkbjm/1496164719

Information

Published: June 2004
First available in Project Euclid: 30 May 2017

zbMATH: 1069.54023
MathSciNet: MR2082227
Digital Object Identifier: 10.21099/tkbjm/1496164719

Rights: Copyright © 2004 University of Tsukuba, Institute of Mathematics

Vol.28 • No. 1 • June 2004
Back to Top