Open Access
June 2003 Characterizing Manifolds Modeled on Certain Dense Subspaces of Non-Separable Hilbert Spaces
Katsuro Sakai, Masato Yaguchi
Tsukuba J. Math. 27(1): 143-159 (June 2003). DOI: 10.21099/tkbjm/1496164566

Abstract

For an infinite set $\Gamma$, let $\ell_{2}^{f}(\Gamma)$ be the linear span of the canonical orthonormal basis of the Hilbert space $\ell_{2}(\Gamma)$, that is, \[ \ell_{2}^{f}(\Gamma) = \{ x\in\ell_{2}(\Gamma) \mid x(\gamma) = 0 \text{ except for finitely many } \gamma\in\Gamma \}.\] We denote $\ell_{2}^{f}=\ell_{2}^{f}(N)$. Let $Q=[-1,1]^{\omega}$ be the Hilbert cube. In this paper, we give characterizations of manifold modeled on the following spaces: $\ell_{2}(\Gamma) \times \ell_{2}^{f}$, $\ell_2^f(\Gamma)$ and $\ell_{2}^{f}(\Gamma)\times Q$, where $\ell_{2}(\Gamma)\times \ell_{2}$ and $\ell_{2}(\Gamma)\times Q$ are homeomorphic to $\ell_{2}(\Gamma)$. Our results are obtained by suitable alteration and modification of the separable case due to Bestvina and Mogilski.

Citation

Download Citation

Katsuro Sakai. Masato Yaguchi. "Characterizing Manifolds Modeled on Certain Dense Subspaces of Non-Separable Hilbert Spaces." Tsukuba J. Math. 27 (1) 143 - 159, June 2003. https://doi.org/10.21099/tkbjm/1496164566

Information

Published: June 2003
First available in Project Euclid: 30 May 2017

zbMATH: 1035.57011
MathSciNet: MR1999241
Digital Object Identifier: 10.21099/tkbjm/1496164566

Rights: Copyright © 2003 University of Tsukuba, Institute of Mathematics

Vol.27 • No. 1 • June 2003
Back to Top