Open Access
June 2000 Nonlinear wave equation with potential
Sandra Lucente
Tsukuba J. Math. 24(1): 81-107 (June 2000). DOI: 10.21099/tkbjm/1496164047

Abstract

We study the Cauchy problem for $u_{tt}-\Delta u+V(x)|u|^{p-1}u=0$ with $x\in R^{n}$. The function $V(x)$ is positive and regular. The exponent $p$ is subcritical or critical. By the aid of Shatah-Struwe technique (cf.[7]), we prove the existence of the global classical solution with suitable hypotheses on $V(x):V(x)>0,3\leq n\leq 7$ or $V(x)=|x|^{2}$, $n=3$. To approach this second case we cannot follow directly the argument used in [7]: we need and prove weighted nonlinear estimates in Besov spaces.

Citation

Download Citation

Sandra Lucente. "Nonlinear wave equation with potential." Tsukuba J. Math. 24 (1) 81 - 107, June 2000. https://doi.org/10.21099/tkbjm/1496164047

Information

Published: June 2000
First available in Project Euclid: 30 May 2017

zbMATH: 0979.35103
MathSciNet: MR1791332
Digital Object Identifier: 10.21099/tkbjm/1496164047

Rights: Copyright © 2000 University of Tsukuba, Institute of Mathematics

Vol.24 • No. 1 • June 2000
Back to Top