Open Access
December 1995 Global existence for a class of quasilinear hyperbolic-parabolic equations
Albert Milani
Tsukuba J. Math. 19(2): 481-496 (December 1995). DOI: 10.21099/tkbjm/1496162882

Abstract

We prove that classical solutions of the dissipative wave equation $\epsilon u_{tt}+u_{t}-u_{xx}-(f(u_{x}))_{x}=0$ are globally defined in time, regardless of the size of the initial data, if $\epsilon$ is sufficiently small.

Citation

Download Citation

Albert Milani. "Global existence for a class of quasilinear hyperbolic-parabolic equations." Tsukuba J. Math. 19 (2) 481 - 496, December 1995. https://doi.org/10.21099/tkbjm/1496162882

Information

Published: December 1995
First available in Project Euclid: 30 May 2017

zbMATH: 0856.35083
MathSciNet: MR1366648
Digital Object Identifier: 10.21099/tkbjm/1496162882

Rights: Copyright © 1995 University of Tsukuba, Institute of Mathematics

Vol.19 • No. 2 • December 1995
Back to Top