Open Access
December 1993 On intersections of compacta in Euclidean space: the metastable case
A.N. Dranisnikov, D. Repovs, E.V. Scepin
Tsukuba J. Math. 17(2): 549-564 (December 1993). DOI: 10.21099/tkbjm/1496162280

Abstract

We prove the following theorem: Let $f:X\rightarrow R^{n}$ and $g:Y\rightarrow R^{n}$ be any maps of compacta $X$ and $Y$ into the Euclidean $n$-space $R^{n}$, $n\geqq 5$. Suppose that $\dim(X\times Y) \lt n$ and that 2 $\dim X+$$\dim Y \lt 2n-1$. Then for every $\epsilon \gt 0$ there exist maps $f^{\prime}$:$X\rightarrow R^{n}$ and $g^{\prime}$:$Y\rightarrow R^{n}$ such that $d(f, f^{\prime}) \lt \epsilon,$d(g, g^{\prime}) \lt \epsilon$ and $f^{\prime}(X)()g^{\prime}(Y)$$=\emptyset$.

Citation

Download Citation

A.N. Dranisnikov. D. Repovs. E.V. Scepin. "On intersections of compacta in Euclidean space: the metastable case." Tsukuba J. Math. 17 (2) 549 - 564, December 1993. https://doi.org/10.21099/tkbjm/1496162280

Information

Published: December 1993
First available in Project Euclid: 30 May 2017

zbMATH: 0830.54017
MathSciNet: MR1255491
Digital Object Identifier: 10.21099/tkbjm/1496162280

Subjects:
Primary: 54C25 , 54F45 , 57Q55
Secondary: 55M10 , 57Q65

Keywords: Casson finger moves , Cogosvili conjecture , Dimension of product of compacta , Freudenthal suspension theorem , metastable range , regularly branched maps , Spanier-Whitehead duality , stable intersection of maps , Whitehead products

Rights: Copyright © 1993 University of Tsukuba, Institute of Mathematics

Vol.17 • No. 2 • December 1993
Back to Top