2024 The limiting behavior of solutions to $p$-Laplacian problems with convection and exponential terms
Anderson L. A. de Araujo, Grey Ercole, Julio C. Lanazca Vargas
Topol. Methods Nonlinear Anal. 64(1): 339-359 (2024). DOI: 10.12775/TMNA.2023.061

Abstract

We consider, for $a,l\geq1$, $b,s,\alpha> 0$, and $p> q\geq1$, the homogeneous Dirichlet problem for the equation $-\Delta_{p}u=\lambda u^{q-1}+\beta u^{a-1}\left\vert \nabla u\right\vert ^{b}+mu^{l-1}e^{\alpha u^{s}}$ in a smooth bounded domain $\Omega\subset\mathbb{R}^{N}$. We prove that under certain setting of the parameters $\lambda$, $\beta$ and $m$ the problem admits at least one positive solution. Using this result we prove that if $\lambda,\beta> 0$ are arbitrarily fixed and $m$ is sufficiently small, then the problem has a positive solution $u_{p}$, for all $p$ sufficiently large. In addition, we show that $u_{p}$ converges uniformly to the distance function to the boundary of $\Omega$, as $p\rightarrow\infty$. This convergence result is new for nonlinearities involving a convection term.

Citation

Download Citation

Anderson L. A. de Araujo. Grey Ercole. Julio C. Lanazca Vargas. "The limiting behavior of solutions to $p$-Laplacian problems with convection and exponential terms." Topol. Methods Nonlinear Anal. 64 (1) 339 - 359, 2024. https://doi.org/10.12775/TMNA.2023.061

Information

Published: 2024
First available in Project Euclid: 23 September 2024

Digital Object Identifier: 10.12775/TMNA.2023.061

Keywords: Convection term , Distance function , exponential term , Gradient estimate

Rights: Copyright © 2024 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.64 • No. 1 • 2024
Back to Top