2024 Existence of solutions for the $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities
Jialin Jiang, Yang Yang
Topol. Methods Nonlinear Anal. 64(1): 243-256 (2024). DOI: 10.12775/TMNA.2023.054

Abstract

This paper deals with the following $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities. Precisely, we study the problem\begin{equation*}\begin{cases}-\Delta_p u -\Delta_N u = |u|^{q-2}u \ln|u|^2 + \lambda f(u)& \text{in }\Omega,\\u=0& \text{on }\partial \Omega,\end{cases}\end{equation*}where $\Omega \subset \mathbb{R}^N$ is a bounded domain, $N \geq 2$, $1< p< N< q$, $\lambda > 0$ is a positive real parameter. By applying variational methods, we obtain the existence of solutions.

Citation

Download Citation

Jialin Jiang. Yang Yang. "Existence of solutions for the $(p,N)$-Laplacian equation with logarithmic and critical exponential nonlinearities." Topol. Methods Nonlinear Anal. 64 (1) 243 - 256, 2024. https://doi.org/10.12775/TMNA.2023.054

Information

Published: 2024
First available in Project Euclid: 15 September 2024

Digital Object Identifier: 10.12775/TMNA.2023.054

Keywords: $(p,N)$-Laplacian , exponential critical growth , logarithmic nonlinearity , variational methods

Rights: Copyright © 2024 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.64 • No. 1 • 2024
Back to Top