2023 Multiple mixed interior and boundary peaks synchronized solutions for linearly coupled Schrödinger systems
Ke Jin
Topol. Methods Nonlinear Anal. 62(2): 693-726 (2023). DOI: 10.12775/TMNA.2023.020

Abstract

In the present paper we consider the problem:\begin{equation} \label{0}\tag{N$_\varepsilon$}\begin{cases}-\varepsilon^{2}\Delta u+u=u^{3}+\lambda v& \text{in } \Omega, \\-\varepsilon^{2}\Delta v+v=v^{3}+\lambda u& \text{in } \Omega,\\u> 0,\ v> 0& \text{in } \Omega,\\\dfrac{\partial u}{\partial n}=\dfrac{\partial v}{\partial n}=0& \text{on }\partial\Omega,\end{cases}\end{equation}where $\varepsilon> 0$, $0< \lambda< 1$, $\Omega\subset\mathbb{R}^{3}$ is smooth and bounded, and $n$ denotes the outer normal vector defined on $\partial\Omega$, the boundary of $\Omega$. By the Lyapunov-Schmidt reduction method and the maximum principle of elliptic equations, we construct synchronized solutions of (\ref{0}) with mixed interior and boundary peaks for any $0< \varepsilon< \varepsilon_0$ and $\lambda\in(0,1)\backslash\{\lambda_0\}$, where $\lambda_0\in(0,1)$ is given and $\varepsilon_0> 0$ is sufficiently small. As $\varepsilon$ approaches $0$, the interior peaks concentrate at sphere packing points in $\Omega$ and the boundary peaks concentrate at the critical points of the mean curvature function of the boundary.

Citation

Download Citation

Ke Jin. "Multiple mixed interior and boundary peaks synchronized solutions for linearly coupled Schrödinger systems." Topol. Methods Nonlinear Anal. 62 (2) 693 - 726, 2023. https://doi.org/10.12775/TMNA.2023.020

Information

Published: 2023
First available in Project Euclid: 19 January 2024

Digital Object Identifier: 10.12775/TMNA.2023.020

Keywords: linearly coupled terms , mixed multiple spikes , Schrödinger system

Rights: Copyright © 2023 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.62 • No. 2 • 2023
Back to Top