VOL. 61 · NO. 1 | 2023
 
VIEW ALL ABSTRACTS +
Articles
Wojciech Kryszewski, Wacław Marzantowicz, Peter Wong
Topol. Methods Nonlinear Anal. 61 (1), 3-6, (2023) DOI: preface
No abstract available
Yuli B. Rudyak, Soumen Sarkar
Topol. Methods Nonlinear Anal. 61 (1), 7-20, (2023) DOI: 10.12775/TMNA.2021.051
KEYWORDS: Lusternik-Schnirelmann category, sectional category, topological complexity
Haibao Duan, Shali Liu
Topol. Methods Nonlinear Anal. 61 (1), 21-36, (2023) DOI: 10.12775/TMNA.2022.012
KEYWORDS: Lie groups, symmetric spaces, fixed point theory
Jorge Aguilar-Guzmán Aguilar-Guzmán, Jesús González
Topol. Methods Nonlinear Anal. 61 (1), 37-57, (2023) DOI: 10.12775/TMNA.2022.018
KEYWORDS: Monoidal topological complexity, Iwase-Sakai conjecture, Fadell-Husseini topological complexity, polyhedral product, relative category
Irina Gelbukh
Topol. Methods Nonlinear Anal. 61 (1), 59-81, (2023) DOI: 10.12775/TMNA.2022.023
KEYWORDS: Reeb graph, circle-valued function, null homotopy, Morse function, cycle rank
Gaiane Panina, Rade T. Živaljević
Topol. Methods Nonlinear Anal. 61 (1), 83-106, (2023) DOI: 10.12775/TMNA.2022.036
KEYWORDS: Envy-free division, configuration space/test map scheme
Pavle V. M. Blagojević, Jaime Calles Loperena, Michael C. Crabb, Aleksandra S. Dimitrijević Blagojević
Topol. Methods Nonlinear Anal. 61 (1), 107-133, (2023) DOI: 10.12775/TMNA.2022.041
KEYWORDS: Fadell-Husseini ideal valued index, mass partitions, existence of equivariant maps
Michael C. Crabb
Topol. Methods Nonlinear Anal. 61 (1), 135-148, (2023) DOI: 10.12775/TMNA.2022.042
KEYWORDS: Borsuk-Ulam Theorem, Bourgin-Yang theorem, equivariant mapping, Euler class
Jessica C. R. R. Costa, Pedro L. Q. Pergher, Renato M. Moraes
Topol. Methods Nonlinear Anal. 61 (1), 149-160, (2023) DOI: 10.12775/TMNA.2022.048
KEYWORDS: $\mathbb{Z}_2^k$-action, fixed data, characteristic number, equivariant cobordism, simultaneous cobordism, $\mathbb{Z}_2^k$-twist action, Stong involution, Hopf line bundle
Michael Farber, Shmuel Weinberger Weinberger
Topol. Methods Nonlinear Anal. 61 (1), 161-177, (2023) DOI: 10.12775/TMNA.2022.049
KEYWORDS: Robot motion planning, topological complexity, motion planning algorithm, characteristic classes
Andrés Ángel, Hellen Colman
Topol. Methods Nonlinear Anal. 61 (1), 179-197, (2023) DOI: 10.12775/TMNA.2022.055
KEYWORDS: orbifolds, $G$-spaces, Lusternik-Schnirelman category, Hilsum-Skandalis maps, path groupoid
Dario Corona, Roberto Giambò, Fabio Giannoni, Paolo Piccione
Topol. Methods Nonlinear Anal. 61 (1), 199-215, (2023) DOI: 10.12775/TMNA.2022.057
KEYWORDS: Lusternik-Schnirelmann category, variational inequalities, brake orbits
Norio Iwase
Topol. Methods Nonlinear Anal. 61 (1), 217-238, (2023) DOI: 10.12775/TMNA.2022.060
KEYWORDS: Lusternik-Schnirelmann category, topological complexity, fibrewise theory, $A_{\infty}$-structure, classifying space
Mohameden Ahmedou, Thomas Bartsch, Tim Fiernkranz
Topol. Methods Nonlinear Anal. 61 (1), 239-256, (2023) DOI: 10.12775/TMNA.2023.003
KEYWORDS: Point vortex Hamiltonian, point vortex equilibria, counter-rotating vortices, mean field equations, sinh-Poisson equation, blow-up solutions
Qiang Zhang, Xuezhi Zhao
Topol. Methods Nonlinear Anal. 61 (1), 257-267, (2023) DOI: 10.12775/TMNA.2022.007
KEYWORDS: Index, attracting fixed point, fixed subgroups, graph selfmap, free group
Robert F. Brown, Daciberg Lima Gonçalves
Topol. Methods Nonlinear Anal. 61 (1), 269-289, (2023) DOI: 10.12775/TMNA.2022.017
KEYWORDS: ‎55M20
Ku Yong Ha, Jong Bum Lee
Topol. Methods Nonlinear Anal. 61 (1), 291-329, (2023) DOI: 10.12775/TMNA.2022.063
KEYWORDS: $p$-adic absolute value, Pontryagin dual, Reidemeister number, solenoid, solenoidal endomorphism, subgroup index, torsion-free abelian group
Jerzy Jezierski
Topol. Methods Nonlinear Anal. 61 (1), 331-352, (2023) DOI: 10.12775/TMNA.2022.053
KEYWORDS: Periodic points, Nielsen number, fixed point index, smooth maps, lens space
Michael R. Kelly
Topol. Methods Nonlinear Anal. 61 (1), 353-360, (2023) DOI: 10.12775/TMNA.2022.061
KEYWORDS: Boundary preserving map, coincidence point, Wecken problem
Wei Wang
Topol. Methods Nonlinear Anal. 61 (1), 361-381, (2023) DOI: 10.12775/TMNA.2021.057
KEYWORDS: compact convex hypersurfaces, closed characteristics, Hamiltonian systems, Morse theory, index iteration theory
Erisa Hasani, Kanishka Perera
Topol. Methods Nonlinear Anal. 61 (1), 383-391, (2023) DOI: 10.12775/TMNA.2021.061
KEYWORDS: $p$-Kirchhoff equation, critical Sobolev exponent, existence, multiplicity, Morse theory, Fadell-Rabinowitz cohomological index, cohomological local splitting
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš
Topol. Methods Nonlinear Anal. 61 (1), 393-422, (2023) DOI: 10.12775/TMNA.2022.010
KEYWORDS: Anisotropic operator, superlinear reaction, positive and nodal solutions, critical groups
Antonio Iannizzotto
Topol. Methods Nonlinear Anal. 61 (1), 423-443, (2023) DOI: 10.12775/TMNA.2022.024
KEYWORDS: fractional $p$-laplacian‎, eigenvalue problems, singular weights
Mónica Clapp, Andrzej Szulkin
Topol. Methods Nonlinear Anal. 61 (1), 445-464, (2023) DOI: 10.12775/TMNA.2022.040
KEYWORDS: Morse index, Brouwer degree, Weakly coupled elliptic system, positive solution, uniform bound
Lin Zhang, Yongqing Li, Zhi-Qiang Wang
Topol. Methods Nonlinear Anal. 61 (1), 465-489, (2023) DOI: 10.12775/TMNA.2022.052
KEYWORDS: Quasi-linear Schrödinger equations, normalized solutions, dual method, the minimax principle
Jacobo Pejsachowicz
Topol. Methods Nonlinear Anal. 61 (1), 491-500, (2023) DOI: 10.12775/TMNA.2022.056
KEYWORDS: Equivariant bifurcation, semilinear Fredholm maps, index bundle, elliptic BVP
Maurizio Imbesi, Giovanni Molica Bisci, Dušan D. Repovš
Topol. Methods Nonlinear Anal. 61 (1), 501-526, (2023) DOI: 10.12775/TMNA.2022.059
KEYWORDS: Semi-linear equations on graphs, variational methods, Critical point theory
Erasmo Caponio, Miguel Angel Javaloyes, Antonio Masiello
Topol. Methods Nonlinear Anal. 61 (1), 527-547, (2023) DOI: 10.12775/TMNA.2022.066
KEYWORDS: Randers metric, Kropina metric, geodesics, affine control systems, causal Killing field, Zermelo's navigation problem
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore
Topol. Methods Nonlinear Anal. 61 (1), 549-574, (2023) DOI: 10.12775/TMNA.2022.069
KEYWORDS: $(p,q)$-quasilinear elliptic equation, asymptotically $(q-1)$-linear problem, $(p,q)$-Laplacian operator, variational methods, essential value, perturbed problem, pseudo-genus, quasi-eigenvalue, regularity of solutions
Back to Top