2021 Generalized Tonnetz and discrete Abel-Jacobi map
Filip D. Jevtić, Rade T. Živaljević
Topol. Methods Nonlinear Anal. 57(2): 547-567 (2021). DOI: 10.12775/TMNA.2020.049

Abstract

Motivated by classical Euler's Tonnetz, we introduce and study the combinatorics and topology of more general simplicial complexes Tonn$^{n,k}(L)$ of Tonnetz type. Out main result is that for a sufficiently generic choice of parameters the generalized Tonnetz Tonn$^{n,k}(L)$ is a triangulation of a $(k-1)$-dimensional torus $T^{k-1}$. In the proof we construct and use the properties of a discrete Abel-Jacobi map, which takes values in the torus $T^{k-1} \cong \mathbb{R}^{k-1}/\Lambda$ where $\Lambda \cong \mathbb{A}^\ast_{k-1}$ is the permutohedral lattice.

Citation

Download Citation

Filip D. Jevtić. Rade T. Živaljević. "Generalized Tonnetz and discrete Abel-Jacobi map." Topol. Methods Nonlinear Anal. 57 (2) 547 - 567, 2021. https://doi.org/10.12775/TMNA.2020.049

Information

Published: 2021
First available in Project Euclid: 4 August 2021

MathSciNet: MR4359726
zbMATH: 1492.57015
Digital Object Identifier: 10.12775/TMNA.2020.049

Rights: Copyright © 2021 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.57 • No. 2 • 2021
Back to Top