2020 Computation of Nielsen and Reidemeister coincidence numbers for multiple maps
Thaís Fernanda Mendes Monis, Peter N. S. Wong
Topol. Methods Nonlinear Anal. 56(2): 483-499 (2020). DOI: 10.12775/TMNA.2020.002

Abstract

Let $f_1,\ldots,f_k\colon M\to N$ be maps between closed manifolds, $N(f_1,\ldots,f_k)$ and $R(f_1,\ldots,f_k)$ be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate $R(f_1,\ldots,f_k)$ with $R(f_1,f_2),\ldots,R(f_1,f_k)$. When $N$ is a torus or a nilmanifold, we compute $R(f_1,\ldots,f_k)$ which, in these cases, is equal to $N(f_1,\ldots,f_k)$.

Citation

Download Citation

Thaís Fernanda Mendes Monis. Peter N. S. Wong. "Computation of Nielsen and Reidemeister coincidence numbers for multiple maps." Topol. Methods Nonlinear Anal. 56 (2) 483 - 499, 2020. https://doi.org/10.12775/TMNA.2020.002

Information

Published: 2020
First available in Project Euclid: 10 December 2020

Digital Object Identifier: 10.12775/TMNA.2020.002

Rights: Copyright © 2020 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.56 • No. 2 • 2020
Back to Top