Open Access
2019 Subspaces of interval maps related to the topological entropy
Xiaoxin Fan, Jian Li, Yini Yang, Zhongqiang Yang
Topol. Methods Nonlinear Anal. 54(2A): 701-714 (2019). DOI: 10.12775/TMNA.2019.065

Abstract

For $a\in [0,+\infty)$, the function space $E_{\geq a}$ ($E_{> a}$; $E_{\leq a}$; $E_{< a}$) of all continuous maps from $[0,1]$ to itself whose topological entropies are larger than or equal to $a$ (larger than $a$; smaller than or equal to $a$; smaller than $a$) with the supremum metric is investigated. It is shown that the spaces $E_{\geq a}$ and $E_{> a}$ are homeomorphic to the Hilbert space $l_2$ and the spaces $E_{\leq a}$ and $E_{< a}$ are contractible. Moreover, the subspaces of $E_{\leq a}$ and $E_{< a}$ consisting of all piecewise monotone maps are homotopy dense in them, respectively.

Citation

Download Citation

Xiaoxin Fan. Jian Li. Yini Yang. Zhongqiang Yang. "Subspaces of interval maps related to the topological entropy." Topol. Methods Nonlinear Anal. 54 (2A) 701 - 714, 2019. https://doi.org/10.12775/TMNA.2019.065

Information

Published: 2019
First available in Project Euclid: 7 October 2019

zbMATH: 07198805
MathSciNet: MR4061317
Digital Object Identifier: 10.12775/TMNA.2019.065

Rights: Copyright © 2019 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.54 • No. 2A • 2019
Back to Top