Translator Disclaimer
2019 Reidemeister spectra for solvmanifolds in low dimensions
Karel Dekimpe, Sam Tertooy, Iris Van den Bussche
Topol. Methods Nonlinear Anal. 53(2): 575-601 (2019). DOI: 10.12775/TMNA.2019.012

Abstract

The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group $G$ is called the Reidemeister spectrum of $G$. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4.

Citation

Download Citation

Karel Dekimpe. Sam Tertooy. Iris Van den Bussche. "Reidemeister spectra for solvmanifolds in low dimensions." Topol. Methods Nonlinear Anal. 53 (2) 575 - 601, 2019. https://doi.org/10.12775/TMNA.2019.012

Information

Published: 2019
First available in Project Euclid: 24 May 2019

zbMATH: 07130711
MathSciNet: MR3983986
Digital Object Identifier: 10.12775/TMNA.2019.012

Rights: Copyright © 2019 Juliusz P. Schauder Centre for Nonlinear Studies

JOURNAL ARTICLE
27 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.53 • No. 2 • 2019
Back to Top