Open Access
2016 Sign-changing solutions for $p$-Laplacian equations with jumping nonlinearity and the Fučik spectrum
Ming Xiong, Ze-Heng Yang, Xiang-Qing Liu
Topol. Methods Nonlinear Anal. 48(1): 159-181 (2016). DOI: 10.12775/TMNA.2016.041

Abstract

We study the existence of sign-changing solutions for the $p$-Laplacian equation $$ -\Delta_pu +\lambda g(x)|u|^{p-2}u=f(u),\quad x\in \mathbb{R}^N, $$ where $\lambda$ is a positive parameter and the nonlinear term $f$ has jumping nonlinearity at infinity and is superlinear at zero. The Fučik spectrum plays an important role in the proof. We give sufficient conditions for the existence of nontrivial Fučik spectrum.

Citation

Download Citation

Ming Xiong. Ze-Heng Yang. Xiang-Qing Liu. "Sign-changing solutions for $p$-Laplacian equations with jumping nonlinearity and the Fučik spectrum." Topol. Methods Nonlinear Anal. 48 (1) 159 - 181, 2016. https://doi.org/10.12775/TMNA.2016.041

Information

Published: 2016
First available in Project Euclid: 30 September 2016

zbMATH: 1368.35152
MathSciNet: MR3561427
Digital Object Identifier: 10.12775/TMNA.2016.041

Rights: Copyright © 2016 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.48 • No. 1 • 2016
Back to Top