Open Access
2016 Nonlinear, nonhomogeneous parametric Neumann problems
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu
Topol. Methods Nonlinear Anal. 48(1): 45-69 (2016). DOI: 10.12775/TMNA.2016.035

Abstract

We consider a parametric nonlinear Neumann problem driven by a nonlinear nonhomogeneous differential operator, with a Carathéodory reaction $f$ which is $p$-superlinear in the second variable, but not necessarily satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation type result describing the dependence of positive solutions on the parameter $\lambda> 0$, show the existence of a smallest positive solution $\overline{u}_{\lambda}$ and investigate properties of the map $\lambda\mapsto\overline{u}_{\lambda}$. Finally, we show the existence of nodal solutions.

Citation

Download Citation

Sergiu Aizicovici. Nikolaos S. Papageorgiou. Vasile Staicu. "Nonlinear, nonhomogeneous parametric Neumann problems." Topol. Methods Nonlinear Anal. 48 (1) 45 - 69, 2016. https://doi.org/10.12775/TMNA.2016.035

Information

Published: 2016
First available in Project Euclid: 30 September 2016

zbMATH: 1367.35083
MathSciNet: MR3561422
Digital Object Identifier: 10.12775/TMNA.2016.035

Rights: Copyright © 2016 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.48 • No. 1 • 2016
Back to Top