Open Access
2015 A homotopical property of attractors
Rafael Ortega, Jaime J. Sánchez-Gabites
Topol. Methods Nonlinear Anal. 46(2): 1089-1106 (2015). DOI: 10.12775/TMNA.2015.082

Abstract

We construct a $2$-dimensional torus $\mathcal{T} \subseteq \mathbb{R}^3$ having the property that it cannot be an attractor for any homeomorphism of $\mathbb{R}^3$. To this end we show that the fundamental group of the complement of an attractor has certain finite generation property that the complement of $\mathcal{T}$ does not have.

Citation

Download Citation

Rafael Ortega. Jaime J. Sánchez-Gabites. "A homotopical property of attractors." Topol. Methods Nonlinear Anal. 46 (2) 1089 - 1106, 2015. https://doi.org/10.12775/TMNA.2015.082

Information

Published: 2015
First available in Project Euclid: 21 March 2016

zbMATH: 1362.37036
MathSciNet: MR3494984
Digital Object Identifier: 10.12775/TMNA.2015.082

Rights: Copyright © 2015 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.46 • No. 2 • 2015
Back to Top