Open Access
2015 Resonant Neumann equations with indefinite linear part
Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou
Topol. Methods Nonlinear Anal. 45(2): 469-491 (2015). DOI: 10.12775/TMNA.2015.023

Abstract

We consider aseminonlinear Neumann problem driven by the $p$-Laplacian plus an indefinite and unbounded potential. The reaction of the problem is resonant at $\pm \infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.

Citation

Download Citation

Giuseppina Barletta. Roberto Livrea. Nikolaos S. Papageorgiou. "Resonant Neumann equations with indefinite linear part." Topol. Methods Nonlinear Anal. 45 (2) 469 - 491, 2015. https://doi.org/10.12775/TMNA.2015.023

Information

Published: 2015
First available in Project Euclid: 30 March 2016

zbMATH: 1373.35131
MathSciNet: MR3408832
Digital Object Identifier: 10.12775/TMNA.2015.023

Rights: Copyright © 2015 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.45 • No. 2 • 2015
Back to Top