Open Access
2014 Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball
Isabel Coelho, Chiara Corsato, Sabrina Rivetti
Topol. Methods Nonlinear Anal. 44(1): 23-39 (2014).

Abstract

We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation $$ \begin{cases} \displaystyle -{\rm div}\bigg( \frac{\nabla v} {\sqrt{1 - |\nabla v|^2}}\bigg)= f(|x|,v) &\quad \text{in } B_R, \\ v=0 & \quad \text{on } \partial B_R, \end{cases} $$ where $B_R$ is a ball in $\mathbb{R}^N$ ($N\ge 2$). According to the behaviour of $f=f(r,s)$ near $s=0$, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.

Citation

Download Citation

Isabel Coelho. Chiara Corsato. Sabrina Rivetti. "Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball." Topol. Methods Nonlinear Anal. 44 (1) 23 - 39, 2014.

Information

Published: 2014
First available in Project Euclid: 11 April 2016

zbMATH: 1366.35029
MathSciNet: MR3289006

Rights: Copyright © 2014 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.44 • No. 1 • 2014
Back to Top