Open Access
2014 Nondecreasing solutions of fractional quadratic integral equations involving Erdélyi-Kober singular kernels
Jie Xin, Chun Zhu, JinRong Wang, Fulai Chen
Topol. Methods Nonlinear Anal. 44(1): 73-88 (2014).

Abstract

In this paper, we firstly present the existence of nondecreasing solutions of a fractional quadratic integral equations involving Erdélyi-Kober singular kernels for three provided parameters $\alpha \in (1/2\},1)$, $\beta\in (0,1]$ and $\gamma\in [\beta(1-\alpha)-1,\infty)$. Moreover, we prove this restriction on $\alpha$ and $\beta$ can not be improved. Secondly, we obtain the uniqueness and nonuniqueness of the monotonic solutions by utilizing a weakly singular integral inequality and putting $\gamma\in [1/2-\alpha,\infty)$. Finally, two numerical examples are given to illustrate the obtained results.

Citation

Download Citation

Jie Xin. Chun Zhu. JinRong Wang. Fulai Chen. "Nondecreasing solutions of fractional quadratic integral equations involving Erdélyi-Kober singular kernels." Topol. Methods Nonlinear Anal. 44 (1) 73 - 88, 2014.

Information

Published: 2014
First available in Project Euclid: 11 April 2016

zbMATH: 1362.45005
MathSciNet: MR3289008

Rights: Copyright © 2014 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.44 • No. 1 • 2014
Back to Top