Open Access
2012 Multiplicity of nonradial solutions for a class of quasilinear equations on annulus with exponential critical growth
Claudianor O. Alves, Luciana R. de Freitas
Topol. Methods Nonlinear Anal. 39(2): 243-262 (2012).

Abstract

In this paper, we establish the existence of many rotationally non-equivalent and nonradial solutions for the following class of quasilinear problems \begin{equation} \begin{cases} -\Delta_{N} u = \lambda f(|x|,u) &x\in \Omega_r,\\ u > 0 &x\in \Omega_r,\\ u=0 &x\in \partial\Omega_r, \end{cases} \tag{$\textrm{P}$} \end{equation} where $\Omega_r = \{ x \in \mathbb{R}^{N}: r < |x| < r+1\}$, $N \geq 2$, $N\neq 3$, $r > 0$, $\lambda > 0$, $\Delta_{N}u= {\rm div}(|\nabla u|^{N-2}\nabla u ) $ is the $N$-Laplacian operator and $f$ is a continuous function with exponential critical growth.

Citation

Download Citation

Claudianor O. Alves. Luciana R. de Freitas. "Multiplicity of nonradial solutions for a class of quasilinear equations on annulus with exponential critical growth." Topol. Methods Nonlinear Anal. 39 (2) 243 - 262, 2012.

Information

Published: 2012
First available in Project Euclid: 21 April 2016

zbMATH: 1275.35111
MathSciNet: MR2985880

Rights: Copyright © 2012 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.39 • No. 2 • 2012
Back to Top