Open Access
2012 Infinitely many homoclinic orbits for supperlinear Hamiltonian systems
Jun Wang, Junxiang Xu, Fubao Zhang
Topol. Methods Nonlinear Anal. 39(1): 1-22 (2012).

Abstract

In this paper we study the first order nonautonomous Hamiltonian system $$ \dot{z}=\mathcal J H_{z}(t,z), $$ where $H(t,z)$ depends periodically on $t$. By using a generalized linking theorem for strongly indefinite functionals, we prove that the system has infinitely many homoclinic orbits for weak superlinear cases.

Citation

Download Citation

Jun Wang. Junxiang Xu. Fubao Zhang. "Infinitely many homoclinic orbits for supperlinear Hamiltonian systems." Topol. Methods Nonlinear Anal. 39 (1) 1 - 22, 2012.

Information

Published: 2012
First available in Project Euclid: 20 April 2016

MathSciNet: MR2934331

Rights: Copyright © 2012 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.39 • No. 1 • 2012
Back to Top