Open Access
2010 Incompressibility and global inversion
E. Cabral Balreira
Topol. Methods Nonlinear Anal. 35(1): 69-76 (2010).

Abstract

Given a local diffeomorphism $f\colon \mathbb{R}^n\to \mathbb{R}^n$, we consider certain incompressibility conditions on the parallelepiped $Df(x)([0,1]^n)$ which imply that the pre-image of an affine subspace is non-empty and has trivial homotopy groups. These conditions are then used to establish criteria for $f$ to be globally invertible, generalizing in all dimensions the previous results of M. Sabatini.

Citation

Download Citation

E. Cabral Balreira. "Incompressibility and global inversion." Topol. Methods Nonlinear Anal. 35 (1) 69 - 76, 2010.

Information

Published: 2010
First available in Project Euclid: 21 April 2016

zbMATH: 1211.58023
MathSciNet: MR2677431

Rights: Copyright © 2010 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.35 • No. 1 • 2010
Back to Top