Open Access
2006 An eigenvalue semiclassical problem for the Schrödinger operator with an electrostatic field
Teresa D'Aprile
Topol. Methods Nonlinear Anal. 27(1): 149-175 (2006).

Abstract

We consider the following system of Schrödinger-Maxwell equations in the unit ball $B_1$ of ${\mathbb R}^3$ $$ -\frac{\hbar^2}{2m}\Delta v+ e\phi v=\omega v, \quad -\Delta\phi=4\pi e v^2 $$ with the boundary conditions $ u=0$, $ \phi=g$ on $\partial B_1$, where $\hbar, m, e, \omega > 0$, $v$, $\phi\colon B_1\rightarrow {\mathbb R}$, $g\colon \partial B_1\to {\mathbb R}$. Such system describes the interaction of a particle constrained to move in $B_1$ with its own electrostatic field. We exhibit a family of positive solutions $(v_\hbar, \phi_\hbar)$ corresponding to eigenvalues $\omega_\hbar$ such that $v_\hbar$ concentrates around some points of the boundary $\partial B_1$ which are minima for $g$ when $\hbar\rightarrow 0$.

Citation

Download Citation

Teresa D'Aprile. "An eigenvalue semiclassical problem for the Schrödinger operator with an electrostatic field." Topol. Methods Nonlinear Anal. 27 (1) 149 - 175, 2006.

Information

Published: 2006
First available in Project Euclid: 12 May 2016

zbMATH: 1135.35027
MathSciNet: MR2236415

Rights: Copyright © 2006 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.27 • No. 1 • 2006
Back to Top