Abstract
We give a formula of the connected component decomposition of the Alexander quandle: $\mathbb{Z}[t^{\pm1}]/(f_1(t),\ldots, f_k(t))=\bigsqcup^{a-1}_{i=0}\mathrm{Orb}(i)$, where $a=\gcd (f_1(1),\ldots, f_k(1))$. We show that the connected component $\mathrm{Orb}(i)$ is isomorphic to $\mathbb{Z}[t^{\pm1}]/J$ with an explicit ideal $J$. By using this, we see how a quandle is decomposed into connected components for some Alexander quandles. We introduce a decomposition of a quandle into the disjoint union of maximal connected subquandles. In some cases, this decomposition is obtained by iterating a connected component decomposition. We also discuss the maximal connected sub-multiple conjugation quandle decomposition.
Citation
Yusuke IIJIMA. Tomo MURAO. "On Connected Component Decompositions of Quandles." Tokyo J. Math. 42 (1) 63 - 82, June 2019. https://doi.org/10.3836/tjm/1502179252