Abstract
We consider a singular nonlinear partial differential equation of the form $$ (t\partial_t)^mu= F \Bigl( t,x,\bigl\{(t\partial_t)^j \partial_x^{\alpha}u \bigr\}_{(j,\alpha) \in I_m} \Bigr) $$ with arbitrary order $m$ and $I_m=\{(j,\alpha) \in \mathbb{N} \times \mathbb{N}^n \,;\, j+|\alpha| \leq m, j<m \}$ under the condition that $F(t,x,\{z_{j,\alpha} \}_{(j,\alpha) \in I_m})$ is continuous in $t$ and holomorphic in the other variables, and it satisfies $F(0,x,0) \equiv 0$ and $(\partial F/\partial z_{j,\alpha})(0,x,0) \equiv 0$ for any $(j,\alpha) \in I_m \cap \{|\alpha|>0 \}$. In this case, the equation is said to be a nonlinear Fuchsian partial differential equation. We show that if $F(t,x,0)$ vanishes at a certain order as $t$ tends to $0$ then the equation has a unique solution with the same decay order.
Citation
Dennis B. BACANI. Jose Ernie C. LOPE. Hidetoshi TAHARA. "On the Unique Solvability of Nonlinear Fuchsian Partial Differential Equations." Tokyo J. Math. 41 (1) 225 - 239, June 2018. https://doi.org/10.3836/tjm/1502179268
Information