Abstract
We are interested in harmonic analysis on $p$-adic homogeneous spaces based on spherical functions. In the present paper, we investigate the space $X$ of unitary hermitian matrices of size $m$ over a ${\mathfrak p}$-adic field $k$ mainly for dyadic case, and give the unified description with our previous papers for non-dyadic case. The space becomes complicated for dyadic case, and the set of integral elements in $X$ has plural Cartan orbits. We introduce a typical spherical function $\omega(x;z)$ on $X$, study its functional equations, which depend on $m$ and the ramification index $e$ of $2$ in $k$, and give its explicit formula, where Hall-Littlewood polynomials of type $C_n$ appear as a main term with different specialization according as the parity $m = 2n$ or $2n+1$, but independent of $e$. By spherical transform, we show the Schwartz space ${\mathcal S}(K\backslash X)$ is a free Hecke algebra ${\mathcal H}(G,K)$-module of rank $2^n$, and give parametrization of all the spherical functions on $X$ and the explicit Plancherel formula on ${\mathcal S}(K\backslash X)$. The Plancherel measure does not depend on $e$, but the normalization of $G$-invariant measure on $X$ depends.
Citation
Yumiko HIRONAKA. "Harmonic Analysis on the Space of $p$-adic Unitary Hermitian Matrices, Mainly for Dyadic Case." Tokyo J. Math. 40 (2) 517 - 564, December 2017. https://doi.org/10.3836/tjm/1502179240
Information