Abstract
Let $K$ be a number field. Fix a finite set of analytic functions $\mathbf{f}_{\infty}:=\{f_{1,\infty}(x),\ldots,f_{s,\infty}(x) \}$ defined on $\{x\in \mathbb{C} \mid |x|>1\}$ (resp. $\mathbb{C}_p$-valued functions $\mathbf{f}_{p}:=\{f_{1,p}(x),\ldots,f_{s,p}(x) \}$ defined on $\{x\in \mathbb{C}_p \mid |x|_p>1\}$). For $\beta\in K$, we denote the $K$-vector space spanned by $f_{1,\infty}(\beta),\ldots,f_{s,\infty}(\beta)$ by $V_K(\mathbf{f}_{\infty},\beta)$ (resp. $f_{1,p}(\beta),\ldots,f_{s,p}(\beta)$ by $V_K(\mathbf{f}_{p},\beta)$). In this article, under some assumptions for $\mathbf{f}_{\infty}$ (resp. $\mathbf{f}_{p}$), we give an estimation of a lower bound of the dimension of $V_K(\mathbf{f}_{\infty},\beta)$ (resp. $V_K(\mathbf{f}_{p},\beta)$) (see Theorem~2.4 for Archimedean case and Theorem~8.6 for $p$-adic case). Applying our estimation, we give a lower bound of the dimension of the $K$-vector space spanned by the special values of the Lerch functions over a number field in $\mathbb{C}$ (see Theorem~1.1 and Remark~1.2) and the $p$-adic analog of the above result (see Theorem~1.3 and Remark~1.4). Furthermore, we also give a lower bound of the $K$-vector space spanned by the special values of certain $p$-adic functions related with $p$-adic Hurwitz zeta function (see Theorem~1.5).
Citation
Minoru HIROSE. Makoto KAWASHIMA. Nobuo SATO. "A Lower Bound of the Dimension of the Vector Space Spanned by the Special Values of Certain Functions." Tokyo J. Math. 40 (2) 439 - 479, December 2017. https://doi.org/10.3836/tjm/1502179237