Open Access
June 2012 Weighted Composition Operators on $C(X)$ and $\mathrm{Lip}_c(X,\alpha)$
Maliheh HOSSEINI, Fereshteh SADY
Tokyo J. Math. 35(1): 71-84 (June 2012). DOI: 10.3836/tjm/1342701345
Abstract

Let $A$ and $B$ be subalgebras of $C(X)$ and $C(Y)$, respectively, for some topological spaces $X$ and $Y$. An arbitrary map $T: A\rightarrow B$ is said to be multiplicatively range-preserving if for every $f,g\in A$, $(fg)(X)=(TfTg)(Y)$, and $T$ is said to be separating if $TfTg=0$ whenever $fg=0$. For a given metric space $X$ and $\alpha\in (0,1]$, let Lip$_c(X,\alpha)$ be the algebra of all complex-valued functions on $X$ satisfying the Lipschitz condition of order $\alpha$ on each compact subset of $X$. In this note we first investigate the general form of multiplicatively range-preserving maps from $C(X)$ onto $C(Y)$ for realcompact spaces $X$ and $Y$ (not necessarily compact or locally compact) and then we consider such preserving maps from Lip$_c(X, \alpha)$ onto Lip$_c(Y,\beta)$ for metric spaces $X$ and $Y$ and $\alpha, \beta\in (0,1]$. We show that in both cases multiplicatively range-preserving maps are weighted composition operators which induce homeomorphisms between $X$ and $Y$. We also give a description of a linear separating map $T: A\rightarrow C(Y)$, where $A$ is either $C(X)$ for a normal space $X$ or Lip$_c(X,\alpha)$ for a metric space $X$ and $0<\alpha\le1$ and $Y$ is an arbitrary Hausdorff space.

References

1.

J. Araujo, E. Beckenestein and L. Narici, Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. Appl. 192 (1995), 258–265.  MR1329423 0828.47024 10.1006/jmaa.1995.1170J. Araujo, E. Beckenestein and L. Narici, Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. Appl. 192 (1995), 258–265.  MR1329423 0828.47024 10.1006/jmaa.1995.1170

2.

J. Araujo and L. Dubarbie, Biseparating maps between Lipschitz function spaces, J. Math. Anal. Appl. 357 (2009), 191–200.  MR2526819 1169.47024 10.1016/j.jmaa.2009.03.065J. Araujo and L. Dubarbie, Biseparating maps between Lipschitz function spaces, J. Math. Anal. Appl. 357 (2009), 191–200.  MR2526819 1169.47024 10.1016/j.jmaa.2009.03.065

3.

J. Araujo and K. Jarosz, Automatic continuity of biseparating maps, Studia Math. 155 (2003), 231–239.  MR1961226 1056.46032 10.4064/sm155-3-3J. Araujo and K. Jarosz, Automatic continuity of biseparating maps, Studia Math. 155 (2003), 231–239.  MR1961226 1056.46032 10.4064/sm155-3-3

4.

M. A. Chebotar, W. F. Ke, P. H. Lee and N. C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), 77–94.  MR1961162 1032.46063 10.4064/sm155-1-6M. A. Chebotar, W. F. Ke, P. H. Lee and N. C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), 77–94.  MR1961162 1032.46063 10.4064/sm155-1-6

5.

H.G. Dales, Banach algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.  MR1816726H.G. Dales, Banach algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.  MR1816726

6.

J. J. Font, Automatic continuity of certain isomorphisms between regular Banach function algebras, Glasgow Math. J. 39 (1997), 333–343.  MR1484575 0901.46042 10.1017/S0017089500032250J. J. Font, Automatic continuity of certain isomorphisms between regular Banach function algebras, Glasgow Math. J. 39 (1997), 333–343.  MR1484575 0901.46042 10.1017/S0017089500032250

7.

H. Goldmann, Uniform Fréchet algebras, North-Holland, Amsterdam, 1990.  MR1049384H. Goldmann, Uniform Fréchet algebras, North-Holland, Amsterdam, 1990.  MR1049384

8.

O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), 2923–2930.  MR2231616 1102.46032 10.1090/S0002-9939-06-08500-5O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), 2923–2930.  MR2231616 1102.46032 10.1090/S0002-9939-06-08500-5

9.

O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281–269.  MR2277782 1113.46047 10.1016/j.jmaa.2006.02.084O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281–269.  MR2277782 1113.46047 10.1016/j.jmaa.2006.02.084

10.

O. Hatori, T. Miura, H. Oka and H. Takagi, Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity, Tokyo J. Math. 32 (2009), 91–104.  MR2541156 1201.46046 10.3836/tjm/1249648411 euclid.tjm/1249648411 O. Hatori, T. Miura, H. Oka and H. Takagi, Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity, Tokyo J. Math. 32 (2009), 91–104.  MR2541156 1201.46046 10.3836/tjm/1249648411 euclid.tjm/1249648411

11.

M. Hosseini and F. Sady, Multiplicatively range-preserving maps between Banach function algebras, J. Math. Anal. Appl. 357 (2009), 314–322.  MR2526831 1171.46021 10.1016/j.jmaa.2009.04.008M. Hosseini and F. Sady, Multiplicatively range-preserving maps between Banach function algebras, J. Math. Anal. Appl. 357 (2009), 314–322.  MR2526831 1171.46021 10.1016/j.jmaa.2009.04.008

12.

K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139–144.  MR1060366 10.4153/CMB-1990-024-2K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139–144.  MR1060366 10.4153/CMB-1990-024-2

13.

A. Jiménez-Vargas, A. Luttman and M. Villegas-Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, to appear in Rocky Mountain J. Math.  MR2764228 10.1216/RMJ-2010-40-6-1903 euclid.rmjm/1294789704 A. Jiménez-Vargas, A. Luttman and M. Villegas-Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, to appear in Rocky Mountain J. Math.  MR2764228 10.1216/RMJ-2010-40-6-1903 euclid.rmjm/1294789704

14.

A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherally-multiplicative maps, Acta Math. Sin. (Engl. Ser.) 24 (2008), 1233–1242.  MR2438296 1178.46049 10.1007/s10114-008-7202-4A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherally-multiplicative maps, Acta Math. Sin. (Engl. Ser.) 24 (2008), 1233–1242.  MR2438296 1178.46049 10.1007/s10114-008-7202-4

15.

A. Jiménez-Vargas, M. Villegas-Vallecillos and Y.-S. Wang, Banach-Stone theorems for vector-valued little Lipschitz functions, Publ. Math. Debrecen 74 (2009), 81–100.  MR2490423A. Jiménez-Vargas, M. Villegas-Vallecillos and Y.-S. Wang, Banach-Stone theorems for vector-valued little Lipschitz functions, Publ. Math. Debrecen 74 (2009), 81–100.  MR2490423

16.

R. Kantrowitz and M. M. Neumann, Disjointness preserving and local operators on algebras of differentiable functions, Glasgow Math. J. 43 (2001), 295–309.  MR1838633 0994.47030 10.1017/S0017089501020134R. Kantrowitz and M. M. Neumann, Disjointness preserving and local operators on algebras of differentiable functions, Glasgow Math. J. 43 (2001), 295–309.  MR1838633 0994.47030 10.1017/S0017089501020134

17.

A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007), 3589–3598.  MR2336574 1134.46030 10.1090/S0002-9939-07-08881-8A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007), 3589–3598.  MR2336574 1134.46030 10.1090/S0002-9939-07-08881-8

18.

L. Molnár, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc. 130 (2002), 111–120.  MR1855627 0983.47024 10.1090/S0002-9939-01-06172-XL. Molnár, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc. 130 (2002), 111–120.  MR1855627 0983.47024 10.1090/S0002-9939-01-06172-X

19.

N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), 1135–1142.  MR2117215 1068.46028 10.1090/S0002-9939-04-07615-4N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), 1135–1142.  MR2117215 1068.46028 10.1090/S0002-9939-04-07615-4

20.

N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras (II), Proc. Edinb. Math. Soc. 48 (2005), 219–229.  MR2117721 1074.46033 10.1017/S0013091504000719N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras (II), Proc. Edinb. Math. Soc. 48 (2005), 219–229.  MR2117721 1074.46033 10.1017/S0013091504000719

21.

M. D. Weir, Hewitt-Nachbin Spaces, North-Holland, Amsterdam, 1975. MR514909 0314.54002M. D. Weir, Hewitt-Nachbin Spaces, North-Holland, Amsterdam, 1975. MR514909 0314.54002
Copyright © 2012 Publication Committee for the Tokyo Journal of Mathematics
Maliheh HOSSEINI and Fereshteh SADY "Weighted Composition Operators on $C(X)$ and $\mathrm{Lip}_c(X,\alpha)$," Tokyo Journal of Mathematics 35(1), 71-84, (June 2012). https://doi.org/10.3836/tjm/1342701345
Published: June 2012
Vol.35 • No. 1 • June 2012
Back to Top