Translator Disclaimer
December 2007 Structure Jacobi Operator of Real Hypersurfaces with Constant Scalar Curvature in a Nonflat Complex Space Form
U-Hang KI, Setsuo NAGAI, Ryoichi TAKAGI
Tokyo J. Math. 30(2): 441-454 (December 2007). DOI: 10.3836/tjm/1202136687

Abstract

Let $M$ be a real hypersurface with almost contact metric structure $(\phi ,\xi ,\eta ,g)$ in a nonflat complex space form $M_{n}(c)$. We denote by $S$ be the Ricci tensor of $M$. In the present paper we investigate real hypersurfaces with constant scalar curvature of $M_{n}(c)$ whose structure Jacobi operator $R_{\xi}$ commute with both $\phi$ and $S$. We characterize Hopf hypersurfaces of $M_{n}(c)$.

Citation

Download Citation

U-Hang KI. Setsuo NAGAI. Ryoichi TAKAGI. "Structure Jacobi Operator of Real Hypersurfaces with Constant Scalar Curvature in a Nonflat Complex Space Form." Tokyo J. Math. 30 (2) 441 - 454, December 2007. https://doi.org/10.3836/tjm/1202136687

Information

Published: December 2007
First available in Project Euclid: 4 February 2008

zbMATH: 1145.53043
MathSciNet: MR2376520
Digital Object Identifier: 10.3836/tjm/1202136687

Subjects:
Primary: 53C40
Secondary: 53C15

Rights: Copyright © 2007 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.30 • No. 2 • December 2007
Back to Top