Open Access
June 2006 Principal Functions for High Powers of Operators
Muneo Chō, Tadasi Huruya, An Hyun Kim, Chunji Li
Tokyo J. Math. 29(1): 111-116 (June 2006). DOI: 10.3836/tjm/1166661870

Abstract

For an operator $T$ with some trace class condition, let $g_{T^n}$ and $g_{{T^n}}^P$ be the principal functions related to the Cartesian decomposition $T^n=X_n+iY_n$ and the polar decomposition $T^n = U_n|T^n|$ for a positive integer $n$, respectively. In this paper, we study properties of $g_{T^n}$ and $g_{T^n}^P$ and invariant subspaces of $T^n.$

Citation

Download Citation

Muneo Chō. Tadasi Huruya. An Hyun Kim. Chunji Li. "Principal Functions for High Powers of Operators." Tokyo J. Math. 29 (1) 111 - 116, June 2006. https://doi.org/10.3836/tjm/1166661870

Information

Published: June 2006
First available in Project Euclid: 20 December 2006

zbMATH: 1120.47016
MathSciNet: MR2258275
Digital Object Identifier: 10.3836/tjm/1166661870

Subjects:
Primary: 47B20
Secondary: 47A10

Rights: Copyright © 2006 Publication Committee for the Tokyo Journal of Mathematics

Vol.29 • No. 1 • June 2006
Back to Top