Abstract
We study the $\lambda$-invariant of the cyclotomic $\mathbf{Z}_2$-extension of $\mathbf{Q}(\sqrt{pq})$ with $p\equiv 3\pmod{8}$, $q\equiv 1\pmod{8}$ and $\bigl(\frac{q}{p}\bigr)=-1$. With further conditions on $q$, we show that $\lambda$-invariant is zero.
Citation
Takashi FUKUDA. Keiichi KOMATSU. "On the Iwasawa $\lambda$-Invariant of the Cyclotomic $\mathbf{Z}_2$-Extension of a Real Quadratic Field." Tokyo J. Math. 28 (1) 259 - 264, June 2005. https://doi.org/10.3836/tjm/1244208291
Information