Open Access
June 2002 Projectively Invariant Cocycles of Holomorphic Vector Fields on an Open Riemann Surface
Sofiane BOUARROUDJ, Hichem GARGOUBI
Tokyo J. Math. 25(1): 33-40 (June 2002). DOI: 10.3836/tjm/1244208934

Abstract

Let $\varSigma$ be an open Riemann surface and Hol($\varSigma$) be the Lie algebra of holomorphic vector fields on $\varSigma$. We fix a projective structure (i.e. a local $\text{SL}_2(\mathbf{C})$-structure) on $\varSigma$. We calculate the first group of cohomology of Hol($\varSigma$) with coefficients in the space of linear holomorphic operators acting on tensor densities, vanishing on the Lie algebra $\text{sl}_2(\mathbf{C})$. The result is independent on the choice of the projective structure. We give explicit formulas of 1-cocycles generating this cohomology group.

Citation

Download Citation

Sofiane BOUARROUDJ. Hichem GARGOUBI. "Projectively Invariant Cocycles of Holomorphic Vector Fields on an Open Riemann Surface." Tokyo J. Math. 25 (1) 33 - 40, June 2002. https://doi.org/10.3836/tjm/1244208934

Information

Published: June 2002
First available in Project Euclid: 5 June 2009

zbMATH: 1028.17014
MathSciNet: MR1908211
Digital Object Identifier: 10.3836/tjm/1244208934

Rights: Copyright © 2002 Publication Committee for the Tokyo Journal of Mathematics

Vol.25 • No. 1 • June 2002
Back to Top