June 2024 Boundedness of Fractional Integrals on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
Yiqun CHEN, Hongchao JIA, Dachun YANG
Tokyo J. Math. 47(1): 19-59 (June 2024). DOI: 10.3836/tjm/1502179390

Abstract

Let $X$ be a ball quasi-Banach function space on ${\mathbb R}^n$ and $H_X({\mathbb R}^n)$ the Hardy space associated with $X$, and let $\alpha\in(0,n)$ and $\beta\in(1,\infty)$. In this article, assuming that the (powered) Hardy–Littlewood maximal operator satisfies the Fefferman–Stein vector-valued maximal inequality on $X$ and is bounded on the associate space of $X$, the authors prove that the fractional integral $I_{\alpha}$ can be extended to a bounded linear operator from $H_X({\mathbb R}^n)$ to $H_{X^{\beta}}({\mathbb R}^n)$ if and only if there exists a positive constant $C$ such that, for any ball $B\subset \mathbb{R}^n$, $|B|^{\frac{\alpha}{n}}\leq C \|\mathbf{1}_B\|_X^{\frac{\beta-1}{\beta}}$, where $X^{\beta}$ denotes the $\beta$-convexification of $X$. Moreover, under some different reasonable assumptions on both $X$ and another ball quasi-Banach function space $Y$, the authors also consider the mapping property of $I_{\alpha}$ from $H_X({\mathbb R}^n)$ to $H_Y({\mathbb R}^n)$ via using the extrapolation theorem. All these results have a wide range of applications.

Citation

Download Citation

Yiqun CHEN. Hongchao JIA. Dachun YANG. "Boundedness of Fractional Integrals on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces." Tokyo J. Math. 47 (1) 19 - 59, June 2024. https://doi.org/10.3836/tjm/1502179390

Information

Published: June 2024
First available in Project Euclid: 19 August 2024

Digital Object Identifier: 10.3836/tjm/1502179390

Subjects:
Primary: 42B20
Secondary: 42B25 , 42B30 , 42B35 , 46E35 , 47A30

Rights: Copyright © 2024 Publication Committee for the Tokyo Journal of Mathematics

Vol.47 • No. 1 • June 2024
Back to Top