Abstract
In this paper, subspaces of $L^p(\mathbb{R}_{q,+})$ are defined using $q$-translations $T_{q,x}$ operator and $q$-differences operator, called $q$-Besov spaces. We provide characterization of these spaces by using the $q$-convolution product.
Citation
Akram Nemri. Belgacem Selmi. "A characterization of weighted Besov spaces in quantum calculus." Tbilisi Math. J. 9 (1) 29 - 48, June 2016. https://doi.org/10.1515/tmj-2016-0004
Information