December 2021 Some notes on the differential geometry of linear coframe bundle of a Riemannian manifold
Habil Fattayev
Tbilisi Math. J. 14(4): 81-95 (December 2021). DOI: 10.32513/asetmj/1932200815

Abstract

In this paper, we construct $f-$structures $F_{\alpha },1 \le \alpha \le {n}$, $\tilde F$ and $\bar F$ on the linear coframe bundle $F^{*}(M)$ of the Riemannian manifold $M$. It is proved that these structures are adapted with the diagonal lift $^{D}g$ of the Riemannian metric $g$ of the manifold $M$ into the linear coframe bundle $F^{*}(M)$. Also we study the integrability and parallelism of the $f-$structures $F_{\alpha },1 \le \alpha \le {n}$, $\tilde F$ and $\bar F$.

Version Information

The current pdf replaces the original pdf file, first available on 16 December 2021. The new version corrects the DOI prefix to read 10.32513.

Citation

Download Citation

Habil Fattayev. "Some notes on the differential geometry of linear coframe bundle of a Riemannian manifold." Tbilisi Math. J. 14 (4) 81 - 95, December 2021. https://doi.org/10.32513/asetmj/1932200815

Information

Received: 30 August 2020; Accepted: 10 April 2021; Published: December 2021
First available in Project Euclid: 16 December 2021

MathSciNet: MR4425161
zbMATH: 1493.53040
Digital Object Identifier: 10.32513/asetmj/1932200815

Subjects:
Primary: 53C15
Secondary: 53C25

Keywords: adapted frame , diagonal lift , F-structure , integrability , linear coframe bundle , parallelizm

Rights: Copyright © 2021 Tbilisi Centre for Mathematical Sciences

Vol.14 • No. 4 • December 2021
Back to Top