Open Access
2002 MEAN STABILITY OF SEMIGROUPS
Shmuel Kantorovitz, Serguei Piskarev
Taiwanese J. Math. 6(1): 89-103 (2002). DOI: 10.11650/twjm/1500407402

Abstract

Let $T(\cdot)$ be a bounded $C_0$-semigroup on the Banach space $X$, with generator $A$. It is shown that the denseness of range $A$ is necessary and sufficient for the semigroup's mean stability with respect to suitable weights. Analogous results are valid for power bounded operators, tensor product semigroups, and cosine operator functions.

Citation

Download Citation

Shmuel Kantorovitz. Serguei Piskarev. "MEAN STABILITY OF SEMIGROUPS." Taiwanese J. Math. 6 (1) 89 - 103, 2002. https://doi.org/10.11650/twjm/1500407402

Information

Published: 2002
First available in Project Euclid: 18 July 2017

zbMATH: 1041.47021
MathSciNet: MR1884457
Digital Object Identifier: 10.11650/twjm/1500407402

Subjects:
Primary: 47D03 , 47D06 , 47D09 , 47D60

Keywords: cosine operator function , c-semigroup , generator , mean stability , point spectrum , power bounded operator , residual spectrum , semigroup , tensor product of semigroups

Rights: Copyright © 2002 The Mathematical Society of the Republic of China

Vol.6 • No. 1 • 2002
Back to Top