Open Access
2000 FINITE MATRICES SIMILAR TO IRREDUCIBLE ONES
Ching-I Hsin
Taiwanese J. Math. 4(3): 457-477 (2000). DOI: 10.11650/twjm/1500407262

Abstract

In this paper, we prove that an $n\times n~(n\geq 3)$ complex matrix $T$ is similar to an irreducible matrix if and only if $T$ is not quadratic and rank $(T-\lambda I)\geq n/2$ for every complex number $\lambda$. As an application, we prove that: for any integers $n$ and $k$ with $ 3 \leq k \lt n$, there exists an $n \times n$ irreducible nilpotent matrix of index $k$. This answers a question posed by P. R. Halmos

Citation

Download Citation

Ching-I Hsin. "FINITE MATRICES SIMILAR TO IRREDUCIBLE ONES." Taiwanese J. Math. 4 (3) 457 - 477, 2000. https://doi.org/10.11650/twjm/1500407262

Information

Published: 2000
First available in Project Euclid: 18 July 2017

zbMATH: 0965.15011
MathSciNet: MR1779110
Digital Object Identifier: 10.11650/twjm/1500407262

Subjects:
Primary: 15A21

Keywords: irreducible matrix , Nilpotent matrix , quadratic matrix

Rights: Copyright © 2000 The Mathematical Society of the Republic of China

Vol.4 • No. 3 • 2000
Back to Top