Open Access
2016 Two-step Homogeneous Geodesics in Homogeneous Spaces
Andreas Arvanitoyeorgos, Nikolaos Panagiotis Souris
Taiwanese J. Math. 20(6): 1313-1333 (2016). DOI: 10.11650/tjm.20.2016.7336

Abstract

We study geodesics of the form $\gamma(t) = \pi(\exp(tX) \exp(tY))$, $X, Y \in \mathfrak{g} = \operatorname{Lie}(G)$, in homogeneous spaces $G/K$, where $\pi \colon G \to G/K$ is the natural projection. These curves naturally generalise homogeneous geodesics, that is orbits of one-parameter subgroups of $G$ (i.e., $\gamma(t) = \pi(\exp(tX))$, $X \in \mathfrak{g}$). We obtain sufficient conditions on a homogeneous space implying the existence of such geodesics for $X, Y \in \mathfrak{m} = T_o(G/K)$. We use these conditions to obtain examples of Riemannian homogeneous spaces $G/K$ so that all geodesics of $G/K$ are of the above form. These include total spaces of homogeneous Riemannian submersions endowed with one parameter families of fiber bundle metrics, Lie groups endowed with special one parameter families of left-invariant metrics, generalised Wallach spaces, generalized flag manifolds, and $k$-symmetric spaces with $k$-even, equipped with certain one-parameter families of invariant metrics.

Citation

Download Citation

Andreas Arvanitoyeorgos. Nikolaos Panagiotis Souris. "Two-step Homogeneous Geodesics in Homogeneous Spaces." Taiwanese J. Math. 20 (6) 1313 - 1333, 2016. https://doi.org/10.11650/tjm.20.2016.7336

Information

Published: 2016
First available in Project Euclid: 1 July 2017

zbMATH: 1357.53053
MathSciNet: MR3580297
Digital Object Identifier: 10.11650/tjm.20.2016.7336

Subjects:
Primary: 53C25
Secondary: 53C30

Keywords: $k$-symmetric space , generalized flag manifold , generalized Wallach space , geodesic orbit space , Homogeneous geodesic , homogeneous space , Riemannian submersion , two-step homogeneous geodesic

Rights: Copyright © 2016 The Mathematical Society of the Republic of China

Vol.20 • No. 6 • 2016
Back to Top