Open Access
1998 GROWTH CONDITIONS AND BISHOP'S PROPERTY
Michael M. Neumann
Taiwanese J. Math. 2(3): 287-295 (1998). DOI: 10.11650/twjm/1500406966

Abstract

We show that a certain logarithmic growth condition on a bounded linear operator on a complex Banach space implies Bishop's property $(\beta )$, and discuss several applications of this result in local spectral theory.

Citation

Download Citation

Michael M. Neumann. "GROWTH CONDITIONS AND BISHOP'S PROPERTY." Taiwanese J. Math. 2 (3) 287 - 295, 1998. https://doi.org/10.11650/twjm/1500406966

Information

Published: 1998
First available in Project Euclid: 18 July 2017

zbMATH: 0921.47005
MathSciNet: MR1641155
Digital Object Identifier: 10.11650/twjm/1500406966

Subjects:
Primary: 47A11 , 47B40

Keywords: Bishop's property $(\beta )$ , Ces\`aro operator , decomposable operator , isometry , local spectral theory

Rights: Copyright © 1998 The Mathematical Society of the Republic of China

Vol.2 • No. 3 • 1998
Back to Top