Open Access
2015 GROWTH AND DIFFERENCE PROPERTIES OF MEROMORPHIC SOLUTIONS ON DIFFERENCE EQUATIONS
Zong-Xuan Chen, Kwang Ho Shon
Taiwanese J. Math. 19(5): 1401-1414 (2015). DOI: 10.11650/tjm.19.2015.5547

Abstract

Consider the difference Riccati equation $f(z+1)=\frac{a(z)f(z)+b(z)}{c(z)f(z)+d(z)}$, where $a,~b,~c,~d$ are polynomials, we precisely estimate growth of meromorphic solutions. To the difference Riccati equation $f(z+1)=\frac{A(z)+f(z)}{1-f(z)}$, where $A(z)=\frac{m(z)}{n(z)},$ $m(z),~n(z)$ are irreducible nonconstant polynomials, we precisely estimate exponents of convergence of zeros and poles of meromorphic solutions $f(z)$, their differences $\Delta f(z)=f(z+1)-f(z)$ and divided differences $\frac{\Delta f(z)}{f(z)}$.

Citation

Download Citation

Zong-Xuan Chen. Kwang Ho Shon. "GROWTH AND DIFFERENCE PROPERTIES OF MEROMORPHIC SOLUTIONS ON DIFFERENCE EQUATIONS." Taiwanese J. Math. 19 (5) 1401 - 1414, 2015. https://doi.org/10.11650/tjm.19.2015.5547

Information

Published: 2015
First available in Project Euclid: 4 July 2017

zbMATH: 1361.30047
MathSciNet: MR3412013
Digital Object Identifier: 10.11650/tjm.19.2015.5547

Subjects:
Primary: 30D35 , 39A10

Keywords: difference Riccati equation , growth order , pole , zero

Rights: Copyright © 2015 The Mathematical Society of the Republic of China

Vol.19 • No. 5 • 2015
Back to Top