Open Access
2015 AUTOMORPHISMS OF NEIGHBORHOOD SEQUENCE OF A GRAPH
Li-Da Tong
Taiwanese J. Math. 19(4): 1085-1096 (2015). DOI: 10.11650/tjm.19.2015.4816
Abstract

Let $G$ be a graph, $u$ be a vertex of $G$, and $B(u)$ (or $B_G(u)$) be the set of $u$ with all its neighbors in $G$. A sequence $(B_1,B_2,...,B_n)$ of subsets of an $n$-set $S$ is a neighborhood sequence if there exists a graph $G$ with a vertex set $S$ and a permutation $(v_1,v_2,...,v_n)$ of $S$ such that $B(v_i)=B_i$ for $i=1,2,...,n$. Define $Aut(B_1,B_2,...,B_n)$ as theset $\{f: f$ is a permutation of $V(G)$ and $(f(B_1),f(B_2),...,f(B_n))$ is a permutation of $B_1$, $B_2$, ...,$B_n\}$. In this paper, we first prove that, for every finite group $\Gamma$, there exists a neighborhood sequence $(B_1,B_2,...,B_n)$ such that $\Gamma$ is group isomorphic to $Aut(B_1,B_2,...,B_n)$. Second, we show that, for each finite group $\Gamma$, there exists a neighborhood sequence $(B_1,B_2,...,B_n)$ such that, for eachsubgroup $H$ of $\Gamma$, $H$ is group isomorphic to $Aut(E_1,E_2,...,E_t)$ for some neighborhood sequence $(E_1,E_2,...,E_t)$ where $E_i \subseteq B_{j_i}$ and $j_1 \lt j_2 \lt \cdots \lt j_t$. Finally, we give some classes of graphs $G$ withneighborhood sequence $(B_1,B_2,...,B_n)$ satisfying that $Aut(G)$ and $Aut(B_1,B_2,...,B_n)$ are different.

Copyright © 2015 The Mathematical Society of the Republic of China
Li-Da Tong "AUTOMORPHISMS OF NEIGHBORHOOD SEQUENCE OF A GRAPH," Taiwanese Journal of Mathematics 19(4), 1085-1096, (2015). https://doi.org/10.11650/tjm.19.2015.4816
Published: 2015
Vol.19 • No. 4 • 2015
Back to Top