Open Access
2015 ENLARGING THE CONVERGENCE DOMAIN OF SECANT-LIKE METHODS FOR EQUATIONS
I. K. Argyros, J. A. Ezquerro, M. A. Hernández-Verón, S. Hilout, Á. A. Magreñán
Taiwanese J. Math. 19(2): 629-652 (2015). DOI: 10.11650/tjm.19.2015.4404

Abstract

We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's method and other popular methods as special cases. The convergence analysis is based on our idea of recurrent functions. Using more precise majorizing sequences than before we obtain weaker convergence criteria. These advantages are obtained because we use more precise estimates for the upper bounds on the norm of the inverse of the linear operators involved than in earlier studies. Numerical examples are given to illustrate the advantages of the new approaches.

Citation

Download Citation

I. K. Argyros. J. A. Ezquerro. M. A. Hernández-Verón. S. Hilout. Á. A. Magreñán. "ENLARGING THE CONVERGENCE DOMAIN OF SECANT-LIKE METHODS FOR EQUATIONS." Taiwanese J. Math. 19 (2) 629 - 652, 2015. https://doi.org/10.11650/tjm.19.2015.4404

Information

Published: 2015
First available in Project Euclid: 4 July 2017

zbMATH: 1357.65064
MathSciNet: MR3332319
Digital Object Identifier: 10.11650/tjm.19.2015.4404

Subjects:
Primary: 47H99 , 49M15 , 65G99 , 65H10

Keywords: Banach space , divided difference operator , majorizing sequence , Newton's method , nonlinear equation , secant-like methods , semilocal convergence , the secant method

Rights: Copyright © 2015 The Mathematical Society of the Republic of China

Vol.19 • No. 2 • 2015
Back to Top