Open Access
2013 FIBONACCI NUMBERS MODULO CUBES OF PRIMES
Zhi-Wei Sun
Taiwanese J. Math. 17(5): 1523-1543 (2013). DOI: 10.11650/tjm.17.2013.2488

Abstract

Let $p$ be an odd prime. It is well known that $F_{p-(\frac {p}{5})} ≡0\; ({\rm mod}\ p)$, where $\{F_n\}_{n \geq 0}$ is the Fibonacci sequence and $(-)$ is the Jacobi symbol. In this paper we show that if $p \not= 5$ then we may determine $F_{p-(p/5)}$ mod $p^3$ in the following way: $$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}}{(-16)^k} ≡ \left( \frac{p}{5} \right) \left( 1+\frac{F_{p-(\frac{p}{5})}}{2} \right) \pmod{p^3}.$$ We also use Lucas quotients to determine $\sum_{k=0}^{(p-1)/2} \binom{2k}{k}/m^k$ modulo $p^2$ for any integer $m \not≡ 0 \ (\mod\ p)$; in particular, we obtain $$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}}{16^k} ≡ \left( \frac{3}{p} \right) \pmod{p^2}.$$ In addition, we pose three conjectures for further research.

Citation

Download Citation

Zhi-Wei Sun. "FIBONACCI NUMBERS MODULO CUBES OF PRIMES." Taiwanese J. Math. 17 (5) 1523 - 1543, 2013. https://doi.org/10.11650/tjm.17.2013.2488

Information

Published: 2013
First available in Project Euclid: 10 July 2017

zbMATH: 1316.11013
MathSciNet: MR3106028
Digital Object Identifier: 10.11650/tjm.17.2013.2488

Subjects:
Primary: 11B39 , 11B65
Secondary: 05A10 , 11A07

Keywords: central binomial coefficients , congruences , Fibonacci numbers , Lucas sequences

Rights: Copyright © 2013 The Mathematical Society of the Republic of China

Vol.17 • No. 5 • 2013
Back to Top