Open Access
2011 Compactness for Commutators of Marcinkiewicz Integrals in Morrey Spaces
Yanping Chen, Yong Ding, Xinxia Wang
Taiwanese J. Math. 15(2): 633-658 (2011). DOI: 10.11650/twjm/1500406226

Abstract

In this paper the authors give a characterization of the compactness for the commutator $[b,\mu_\Omega]$ in the Morrey spaces $L^{p,\,\lambda}(\mathbb R^n)$, where $\mu_\Omega$ denotes the Marcinkiewicz integral. More precisely, the authors prove that if $b\in \mathrm{VMO}(\mathbb{R}^n)$, the $\mathrm{BMO}(\mathbb{R}^n)$-closure of $C_c^\infty(\mathbb{R}^n)$, then the commutators $[b,\mu_\Omega]$ is a compact operator in the Morrey spaces $L^{p,\,\lambda}(\mathbb{R}^n)$ for $1 \lt p \lt \infty$ and $0 \lt \lambda \lt n$. Conversely, if $b \in \mathrm{BMO}(\mathbb{R}^n)$ and $[b, \mu_{\Omega}]$ is a compact operator in $L^{p,\,\lambda}(\mathbb{R}^n)$ for some $p \in (1, \infty)$ and $\lambda \in (0,n)$, then $b \in \mathrm{VMO}(\mathbb{R}^n)$. In the above results, the kernel function $\Omega$ of the operator $\mu_{\Omega}$ is assumed to satisfy a very weak condition on $S^{n-1}$.

Citation

Download Citation

Yanping Chen. Yong Ding. Xinxia Wang. "Compactness for Commutators of Marcinkiewicz Integrals in Morrey Spaces." Taiwanese J. Math. 15 (2) 633 - 658, 2011. https://doi.org/10.11650/twjm/1500406226

Information

Published: 2011
First available in Project Euclid: 18 July 2017

zbMATH: 1229.42015
MathSciNet: MR2810173
Digital Object Identifier: 10.11650/twjm/1500406226

Subjects:
Primary: 42B30 , 42B99

Keywords: commutators , compactess , Marcinkiewicz integrals , Morrey space , VMO

Rights: Copyright © 2011 The Mathematical Society of the Republic of China

Vol.15 • No. 2 • 2011
Back to Top